Additional Resources: Product Page

MODEL: CP050-102029 | DESCRIPTION: PELTIER MODULE

FEATURES

- silicone sealed
- \cdot wide Δ T max
- low profile
- precise temperature control
- solid state construction

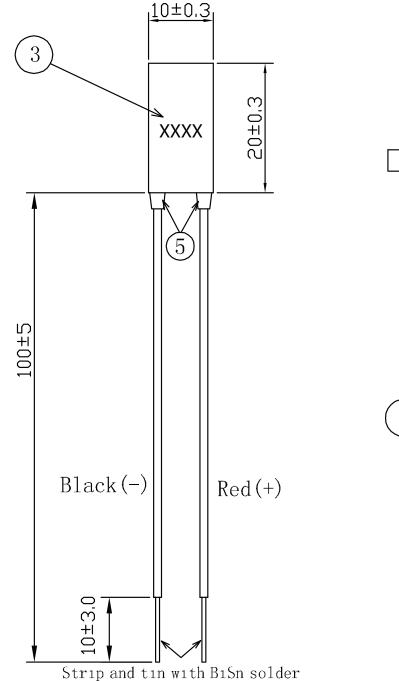
.....

SPECIFICATIONS

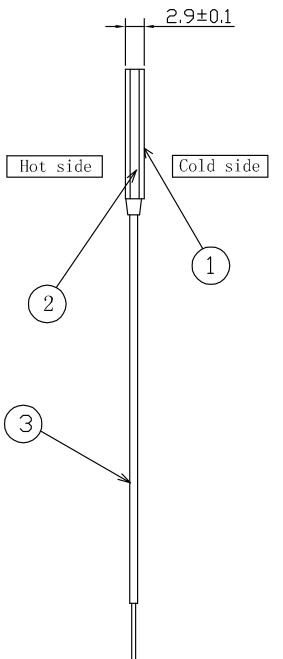
parameter	conditions/description	min	typ	max	units
input voltage ¹				5.3	V
input current ²				5	А
internal resistance ³		0.77	0.86	0.95	Ω
Qmax⁴	Th = 27°C Th = 50°C			14.5 16.0	W W
ΔTmax⁵	Th = 27°C Th = 50°C			68 75	С С
solder melting temperature	connection between thermoelectric pairs	235			°C
assembly compression				1	MPa
hot side plate				100	°C
RoHS	Ves				

.....

Notes: 1. Maximum voltage at Δ T max and T_b=27°C

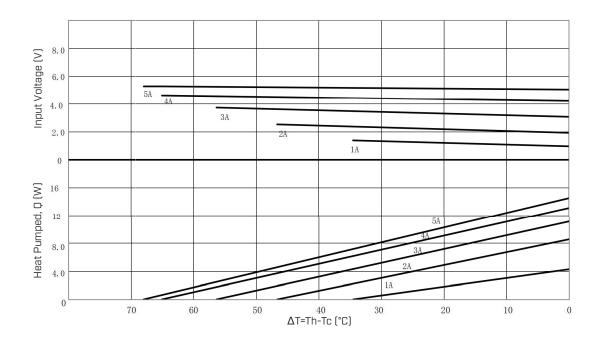

2. Maximum current to achieve $\Delta T \max^{n}$

2. Maximum current of a times at times 3. Measured by AC 4-terminal method at 25°C 4. Maximum heat absorbed at cold side occurs at I_{max} , V_{max} , and Δ T=0°C 5. Maximum temperature difference occurs at I_{max} , V_{max} , and Q=0 W (Δ T max measured in a vacuum at 1.3 Pa)

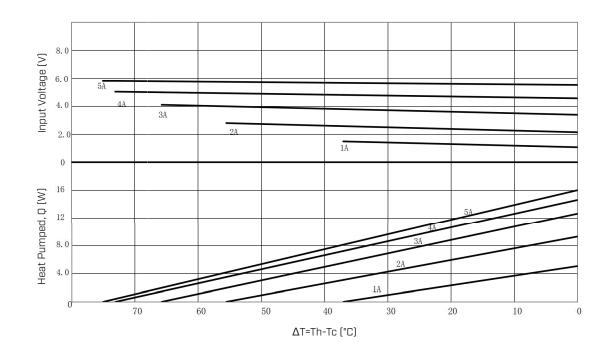

MECHANICAL DRAWING

units: mm

ITEM	DESCRIPTION	MATERIAL	PLATING/COLOR		
1	ceramic plate	96% AL ₂ O ₃	white		
2	sealer	silicon rubber 703 hot side plates)	silicon rubber 703 RTV (between cold and hot side plates)		
З	marking	P/N & S/N printed	P/N & S/N printed on cold side surface		
4	wire leads	24 AWG (200°C max)	tin		
5	joint cover	silicon rubber 703	RTV		



.....


.....

PERFORMANCE (Th=27°C)

PERFORMANCE (Th=50°C)

.....

REVISION HISTORY

rev.	description	date
1.0	initial release	10/24/2024

The revision history provided is for informational purposes only and is believed to be accurate.

Same Sky offers a one (1) year limited warranty. Complete warranty information is listed on our website.

same sky

Same Sky reserves the right to make changes to the product at any time without notice. Information provided by Same Sky is believed to be accurate and reliable. However, no responsibility is assumed by Same Sky for its use, nor for any infringements of patents or other rights of third parties which may result from its use.

Same Sky products are not authorized or warranted for use as critical components in equipment that requires an extremely high level of reliability. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.